CALCULATORS, MOBILE PHONES AND PAGERS ARE NOT ALLOWED.

Answer all of the following questions. Each (Sub)question is worth 5 points.

1. Use logarithmic differentiation to find $\frac{dy}{dx}$, if

$$y = \frac{(3^{\sec^{-1}x})\sqrt[3]{1+x^3}}{(1+\cos^{-1}x)\cosh x}.$$

- 2. Evaluate $\lim_{x\to\infty} e^x \ln (1 + \sin(e^{-x}))$.
- 3. Evaluate the following integrals

(a)
$$\int \frac{x^5}{\sqrt{x^3+1}} dx.$$

(b)
$$\int \frac{(\sin 2x)\sqrt{\cos x}}{\csc^2 x} dx.$$

(c)
$$\int \frac{\sinh^2 x}{5 + 4 \tanh x - \tanh^2 x} dx.$$

- 4. Determine if the integral $\int_{3}^{\infty} \frac{1}{\sqrt{x(9+x)}} dx$ is convergent or divergent, and if convergent find its value.
- 5. Find the length of the curve given parametrically by

$$x(t) = e^t$$
, $y(t) = t$, $0 \le t \le \ln \sqrt{3}$.

- 6. Find the area of the region that lies inside the cardioid $r = 4(1+\sin\theta)$ and outside the circle $r = 4\sin\theta$.
- 7. Let a and b be two vectors in V_3 . Show that a \times b is orthogonal to a.
- 8. Let A(0,2,1), B(2,1,2) and C(1,1,3) be points in \mathbb{R}^3 . Find the parametric equation of the line passing through A and B. Find the equation of the plane determined by A, B and C.